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Ferroelectric instability in semiflexible liquid crystalline 
polymers of directed dipolar chains 
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t Depamnent of Mathematical Studies, University of Southampton SO9 5NH. UK 
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Abstract. A ferroelectric instability is predicted to occur in an experimentally accessible 
temperarure range in a main-chain (semiflexible) liquid crystalline polymer with directed polar 
mesogenic segments. The long-range part of the dipoledipole interaction is separated and its 
effect is completely accounted for in the average electric field. The remaining (local) free energy 
density is derived in the form of an expansion in powers of the spontaneous polxization. We 
derive simple expressions for (he instability temperature and the polar mean-field coupling in a 
polar nematic polymer in brms of the molecular model parameters Using simple estimates we 
show that fenwlecvic ordering is more likely to occur in nematic polymers with directed polar 
segments than in low molecular weight nematic liquid crystals composed of polar molecules. 

1. Introduction 

It has long been understood that, in principle, a phase transition can take place in an isotropic 
liquid so that it spontaneously becomes polar. The continuum theory r1.21 states that an 
isotropic liquid composed of polar molecules can undergo a second-order transition into a 
ferroelectric phase with symmetry Cav. If the liquid is composed of chiral molecules, the 
transition is first order and the hypothetical ferroelec~c phase is helicoidal. 

In spite of these general arguments ferroelectric ordering in isotropic liquids has not 
yet been observed. This fact indicates that there are some strong microscopic effects that 
resist the appearance of polarization in a liquid, even when the permanent dipole moment 
of individual molecules is sufficiently large. Thus one has to look for some very specific 
systems to be able to expect a ferroelectric phase transition. 

One direction is to search in a nematic liquid crystal phase which already has uniaxial 
symmetry. In such anisotropic liquids the molecular symmetry axes (long axes for rod-like 
particles and short ones for disk-like particles) are on average parallel and one can also 
expect polar ordering if the molecules possess large longitudinal dipoles. Several attempts 
have been made to include steric effects that would favour local polar alignment [3], in 
particular in a nematic of disk-like molecules. Regardless of the degree of success of these 
models, ferroelectric ordering phenomena in conventional nematic liquid crystals have not 
so far been observed. 

From the microscopic point of view one finds immediately that the typical dipol+ 
dipole interaction in a liquid is too weak to produce a thermodynamically stable local 
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ordering. We can see this by introducing a dimensionless parameter p m 2 / k e T ,  where p 
is the number density and m is the molecular dipole. This parameter is the ratio of the 
average dipolddipole interaction energy to the energy of thermal fluctuations. For typical 
molecular dipolar moments Iml - 1 D, and at typical densities and temperatures, one finds 
pm2/ksT - implying that the ferroelectric ordering must be destroyed by thermal 
molecular motion. On the other hand there exist nematic liquid crystals with very large 
molecular dipoles of about 5 D 141. In this case the parameter pmZ/ksT  - I .  Unfortunately 
such nematic liquid crystals have a strong tendency to form dimers with antiparallel dipoles, 
while the appearance of a macroscopic polarization seems to be less favourable. However, 
these arguments remain qualitative and at the present time there is no consistent statistical 
theory which takes all these effects into consideration. 

Recently the possibility of a ferroelectric phase transition in isotropic liquids and 
nematic liquid crystals has been supported by molecular dynamics [5] and Monte Carlo [6] 
simulations of polar ordering in simple dipolar liquids. However, in these simulations the 
polar ordering is sensitive to the boundary conditions, since the individual molecular dipoles 
interact with the reaction field from the surrounding dielectric. This field gives a negative 
contribution to the free energy of the form -UT,IP~~,  which may produce an instability if 
the dielectric susceptibility of the medium surrounding the sample is sufficiently large. It 
is important that this kind of transition is stabilized globally by long-range dipolar forces. 
This is different from usual phase transitions where the order parameter appears as a result 
of a locd instability and is determined by the short-range part of the interaction potential. 
When the susceptibility of the surrounding medium is small there is no transition and we 
do not know what will happen when this susceptibility is equal to that of the sample liquid 
itself (i.e. for the case of an infinite sample). 

Dipolar nematic polymers are among the most promising materials in which to obtain 
polar ordering because the individual monomers’ dipole moments mp are already strongly 
correlated and consistently aligned along the chain. (This correlation becomes greatly 
enhanced in the nematic phase [7,8].) Preparation of such materials requires sequential 
polymerization of asymmetric (polar) monomers [9] and is briefly discussed at the end of 
section 5. Recently Lam and Wang [IO] have presented a simple mean-field theory to 
describe the ferroelectric transition in such polymer systems. These authors have assumed 
a polar form of the mean-field potential, acting on each monomer, U - g ( m k  . P) ,  and 
expressed the spontaneous polarization and the phase transition temperature in terms of 
the mean-field coupling constant. However, this theory may be considered as a semi- 
phenomenological one since it does not permit the transition temperature to be expressed in 
terms of molecular model parameters. Thus one cannot estimate the transition temperature 
for real nematic polymers and also cannot answer the question why these materials, rather 
than conventional nematics, are more likely to be polar. 

Dipolar nematic polymers are known to possess a large dielectric susceptibility [7,8] 
which is determined by the cooperative responce of all polar momomers within a semi- 
rigid segment of the chain. Such a system will therefore be very sensitive to polarization 
fluctuations. As a result, the polar interaction between chains can cause ferroelectric ordering 
at reasonable temperatures and dipole strengths. Recently, Terentjev and Petcheck [12] 
calculated the dielectric susceptibility of a dipolar nematic polymer taking into account 
interchain interaction. In this theory it is shown that the susceptibility can diverge at 
a critical temperature which is a function of the dipole strength and the nematic order 
parameter. However, it is necessery to go further to construct a consistent theory of a 
ferroelectric phase transition in a nematic polymer. In particular, one must calculate the 
free energy as a function of the spontaneous polarization and take account, in a consistent 
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way, of contributions from the long-range part of the monomer dipoledipole interaction. 
In this paper we shall consider in detail the possibility of a ferroelectric phase transition 

in nematic polymer melts using the density functional approach. We shall derive the 
Landau-type expansion of the corresponding free energy in powers of the macroscopic 
polarization P and discuss the ferroelectric instability which manifests itself in the sign 
inversion of the familiar quadratic term a(T - Tc)P2. However, we shall not analyse the 
actual equilibrium smctnre of the low-temperature ferroelectric phase, although we shall 
return to this important question in the discussion. We shall show that the ferroelechic 
instability temperame T, is roughly proportional to the persistence length of the polymer 
Lscp which rapidly increases with the growth of the nematic order parameter. As a result, 
the estimated values of the instability temperature may be in an experimentally accessible 
range for reaIistic values of the dipole strength. This explains why dipolar nematic polymers 
seem more likely to be ferroelectric than low molecular weight nematic liquid crystals. 
Indeed, in conventional nematics the corresponding instability temperature is of the order of 
(d/L)pd*/kB, where d is the molecular diameter, while in nematic polymers the temperature 
T, is proportional to the additional factor Lxgm/L  >> 1, where L is the monomer length. 

This paper is arranged as follows. In section 2 we discuss the density functional of 
the polymer melt in the mean-field approximation including the free energy of a single 
chain and the interaction between different chains. We also present a simple method for 
substracting the long-range part of the dipoledipole interaction, which is then absorbed 
in the energy of the average electric field in the medium. In section 3 we consider a 
perturbation theory for the configurational enhopy of the polymer chain in a polar mean 
field and derive an expression for the free energy as a function of the average polarization. 
In section 4 we derive explicit expressions for the polar mean field and for the ferroelectric 
instability temperature. Finally, in section 5 we summarize our conclusions and compare the 
possibilities of observing a ferroelectric instability in nematic polymers and low molecular 
weight nematics. 

2. Density functional of the polar nematic polymer 

2.1. Interaction energy of polar nwnomers on the polymer chain 

We consider a system of N k  interacting semiflexible chains, consisting of polar monomers 
with dipole moments mi = mui along the chain (the monomer's index i runs from 1 
to N for each chain, U is the tangential unit vector-the long axis of a monomer). The 
Hamiltonian for this system can be written in the form H = 'Ho + 'Hi,. where 'H,, describes 
the penalty for bending the individual chains and Hi,, includes all relevant pair interactions: 

where ,!3 = l/ksT, the last expression for 'Ho corresponds to the worm-like chain 
model [13], and s is the continuous representation of the integer index i. The molecular 
field approximation applied to such a polymer system can be interpreted as a substitution 
of 'Hint by a mean-field potentia! acting on each given monomer: 
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where p is the number density, f ( j 6 )  is the proper one-particle distribution function and 
d [  j a )  represents integration over all degrees of freedom of the corresponding monomer with 
its index j located on the chain indexed p. The free energy of the system of Nch chains 
can then be written in the form 

F =  - N & k s T h l Z ~  - $Pz I.',rr(l,2)f(I)f(2)d[ltd[2) (3)  s 
where 2, is the partition function of an individual chain in the mean field and the second 
term contains the average energy of the pair interaction between two arbitrary monomers 
'1' and '2' in the system. The effective pair potential Yea is usually determined by an 
expansion of the Mayer's function, f12 = ksT (-1 + exp[-pV(I, 741) in powers of the soft 
attraction potential 

&(I, 2) VaU(l, 2)e-a"4,2) - kBT [e-6"m(l*z) - 1 I (4) 

where VEp is a hard-core (singular) repulsion potential. In the absence of long- 
range ataaction forces this expression reduces naturally to the standard excluded volume 
interaction (isotropic, or anisotropic) 1141. In a molecular theory of polar polymers one has 
to take into account the dipole-dipole interaction between monomers. 

~ i f ( 1 , ~ )  =ml . % z ) . 7 n 2 ~ 1 2 - - r i 2 )  (5) 

with the standart dipols-dipole operator Tij(r)  = r-3(6i, - 32~(2~),  where i, j are the 
Cartesian coordinate indices; the unit vector 2 = r / r .  The steric cut-off is represented here 
by a step function: exp[-8VEp(f, j)l --f @(&j - ri,), where ri, = Iri - rjl and tij is an 
(anisotropic) form factor-the minimal distance of approach of the two monomers i and j .  
This step function is equal to unity outside the restricted regions where the hard cores of 
the two monomers penetrate into each other, and is equal to zero inside (see [IS] for more 
details). Assume, for generality, that there is an extemal electric field, EO, also present in 
the system, which interacts with dipolar monomers via an additional potential -(m . Eo). 

However, one cannot simply substitute the dipole-dipole potential (5) into the free 
energy (3) since the second term in (3) diverges after integration over T U .  This is the 
well known properly of long-range dipole4ipole interactions, which must be treated with 
caution in the statistical theory of condensed matter. In fact one first has to separate the 
long- and short-range parts of the total potential. 

The long-range part of the total interaction potential can be extracted by distinguishing 
between the average and fluctuating parts of the electric field which acts on a given 
molecule [16]. It is the interaction between the molecular dipoles and the average electric 
field in the media that appears to be long range. The average of this long-range part of the 
interaction is simply the energy of the electromagnetic field in the volume of the sample 
and can be considered within the context of continuum theory. The rest of the interaction 
(fluctuating part) appears to be short-range and can be treated by a statistical theory in 
the usual way. It should be noted that this is a standard procedure of the regularization of 
potentially divergent forces, first applied long ago by Ewald [ 171 in the theory of dielectrics. 
Below we consider in some detail the separation between the short- and long-range parts of 
the effective dipoldipole  interaction using the simple model of a classical fluid composed 
of non-polarizable molecules with permanent dipoles. 
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2.2. Long-range part of the dipole-dipole interaction 

In the molecular field approximation the average interaction between permanent dipoles in  
a molecular liquid can be written as 

U d =  ~ p Z ~ ~ ~ ( l . 2 ) e - B ” ~ ~ ( ” ” ) ( l ) f ( 2 ) d ( l ) d ( 2 }  - P I ( &  .m) f ( l )d{ l )  (6) 

where V u  is the usual dipole-dipole interaction potential and VEp is the energy of steric 
repulsion, which is equal to infinity when molecules ‘1 ’  and ‘2’ penetrate into each other and 
is equal to zero otherwise. The second term in (6) represents interaction with the extemal 
field & produced by charges outside the dielectric. The integration is performed, as usual, 
over the translational and orientational degrees of freedom, d[ 1) = d r l  d u l  , 

At large separations TIZ the integral in (6) diverges, while at short distances the effective 
interaction potential in (6) vanishes due to the steric cut-off. The divergence can be 
more conveniently eliminated if one also considers the average of the ‘pure’ dipole-dipole 
interaction potential, without the cut-off at small rp12. If we add and subtract such a term 
from equation (6), the latter can be rewritten as 

+ip2sVdd( l ,2) f ( l ) f (2)d{ l ld(2) -  P / @ o * m ) f ( l ) d { l }  (7) 

where 0(tI2 - r12) is the step function introduced in equation (5). Now the effective 
potential in the first term in (7), !&(I, 2)[0(e12 - r12) - 11, is different from zero only at 
small intermolecular separations, 112 < Fly = I .  The long-range dipole-dipole interaction 
is now contained in the second term in equation (7). 

Now we are going to show that the last two terms in (7) represent the energy of 
the electromagnetic field in the medium and can be explicitly expressed in terms of the 
macroscopic (average) electric field E(T)  and the polarization P(T). In the uniform system 
we can write 

P = p ( m )  = p nzf( l )d[ l ) .  (8) s 
The average electric field now takes the form 

E(r)  = EO - ?(T - T’) P(T‘) dr’ . (9) 

Using equations (8) and (9) we can represent the average dipole-dipole interaction potential 
in the form 

~ ~ ~ S / V ~ ( l , 2 ) f ( l ) f ( 2 ) d ( L ) d ~ 2 1 -  ~ / ” ( E o . m ) f ( l ) d U )  

In a similar way one can separate the short- and long-range parts of the mean-field 
potential UMF,  expressing them in term of the effective short-range dipole-dipole potential 
Vu(1, 2)[@(& - r12) - 11 and the average electric field in the medium, E:  

UM‘ = u,m + U,gF - (P. E )  (11) 
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with 

uzF(I) =P/vdd(lq2)[@(tI2- 112) - Ilf(2)d{2) (12) 

where Uow is the part of molecular field ( 2 )  determined by non-polar interactions, and 
the long-range effects are contained in the last term. We note that the free energy of 
a nematic polymer (3) depends on the average dipole-dipole potential (7) and the mean 
field (2). Taking into account (lOHl2) we conclude that the free energy of the polar 
nematic polymer can be expressed in terms of the effective short-range dipoledipole 
potential v d d ( i .  j)[O(ci, - rjj)  - I], while all the long-range effects are accumulated in 
the energy of the average electric field in the medium, E(r) .  

It is important to note here that this average electric field is determined by boundary 
conditions and there often is an experimental possibility of ensuring that E vanishes in 
the sample. This is the case, for example, when the sample is placed between shortened 
condenser plates. In the rest of this paper we shall set E = 0 since we are concerned with 
the appearance of local spontaneous polarization, which is not induced by any external field. 

2.3. Free energy of a single polymer chain 

The free energy of a single polymer chain is given by the first term in equation (3). where the 
configurational partition function ZN is a functional of the one-particle distribution function 
f (i) through the expression (2)  for the mean-field UMF 

where 1 is the monomer length. 
According to the general density functional approach to the theory of anisotropic 

liquids [le] the free energy of the system can be represented as a functional of the average 
oneparticle distribution function, f ( r ,  U ) ,  which depends both on the position and on the 
orientation of the particle (monomer in our case). The general structure of this functional 
is not known, of course, but the functional derivatives of the free energy are known and 
are related to the direct correlation functions of the medium. 

In equation (3) the second term already has the form of a functional of f (r,  U). The 
problem is to derive the density functional for the individual chain in an external field 
UMF-the first term in the free energy (3). Various approximations of this functional exist. 
Historically, the first one is the Edwards’ expression for the excluded volume screening [14], 
which produced terms - [Vp(r)J2  in the free energy. Lifshits [19] has proposed another 
method of converting to collective variables, obtaining the chain configuration entropy in 
the form - [ V p ( r ) 1 2 / 4 p ( ~ ) .  Other versions for the density functional for this individual 
chain free energy have been obtained either by the development of these two models, 
or combining them in some way [ZO]. The situation is more complicated when both 
the orientational and translational distribution functions are non-uniform. Ln this case the 

f (r, U) = Ex B[r-rx]S[u-~~]. Grosberg and Khokhlov 1211 have written the expression, 
based on the same idea of the ground-state dominance [19], as 

proper density functional must combine gradients a/ar and a/au of the one-particle density 

(14) as 
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which is suitable when the number density of monomers is uniform and there are no external 
fields breaking the uniaxial non-polar symmetry of the system. 

The derivation of a complete density functional free. energy for the semiflexible chain, 
allowing for variations of both orientational distribution function and the number density, 
is a separate theoretical task. In this paper we can avoid this problem by either using 
equation (14) when the conditions for its validity are satisfied, or by keeping this first term 
in the free energy (3) in the form of a path integral. understanding that it does represent 
the functional of f ( i )  through the definition of mean field. This one-particle distribution 
function, in turn, must correspond to a minimum of the free-energy functional (3). Therefore, 
since we are looking for terms proportional to [PIz in the free energy, ody linear corrections 
f - fo - P should be kept in the dishibution function of the low-symmetry state. 

3. Perturbation theory for configurational entropy 

The general expression for the individual chain free energy functional in a nematic phase 
with polarization (we take for definiteness that the direction of P coincides with the uniaxial 
anisotropy direction n) can be obtained from equation (13) by introducing a delta-function 
constraint at 

(the last equality is valid only for a uniform system). Note that for a directed dipolar chain 
polarization P is proportional to the end-to-end distance R = 1 xi U?.  Exponentiating this 
constraint and assuming a spatially uniform system we obtain 

= /DAdudu'e'"G(u,u', N ;  [AI) (16) 

where A is the auxiliary field associated with fixed polarization which acts as an external 
field in (16). The integral over the configurations {ui) is expressed through the propagator 
G(u, U', N ;  [A]) of the chain in this external potential - A(n*ui). G(u,  U', N ;  [AI) satisfies 
the orientational diffusion equation with perturbation 

1 m 
ke T V 

V i  + --UMF(%) + iA-(n. U G(u, U', N ;  [A]) = J ( N ) J ( u  - U'). (17) 

In this equation, as in (14), p', is the angular part of the Laplace operator. The mean-field 
potential UMF in the non-polar nematic phase has two deep wells around the poles of the 
unit sphere of orientations U ,  along the nematic director n = -n, and the barrier of the 
height J on its equator, penalizing the deviations of U from n. Qualitatively, in the polar 
phase, U M F  - J1 (n . U) - J ( n  . U)'. In the main order the mean-field potential barrier 
J is proportional to the nematic order parameter S and the polar coupling constant J1 is 
proportional to polarization, J1 = JpP. This polar portion of the molecular field can be 
readily accomodated into the main equation (17) by renormalizing the auxiliary field, viz 
A' = A - iV(J:/mkBT)P. 

There are several ways to solve equation (17). The most convenient and well developed 
route is by expressing its eigenfunctions through spheroidal functions Sp, [22]. The solution 
of the corresponding eigenproblem with the polar perturbation - (n  . U )  is described in 
detail by Terentjev and Petschek [12,23]. Here we merely apply that solution assuming, as 
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in 1121, that nematic ordering is sufficiently strong (there are many experimental, as well as 
theoretical, indications that even at the transition to isotropic phase, the order parameter of 
the main-chain polymer melt remains sufficiently high, S - 0.5). 

A small, but important, technical point is relevant here. One has to be careful with 
the estimate of the relative magnitude of the 'perturbation potential' A in equation (17) 
and the splitting of the eigenvalues of the initial problem. This splitting may be 
exponentially small in the hairpin regime of the nematic phase [7,8,12]: 121 - ho = 
A - @ Q J e x p [ - 2 m  << 1. In many cases it is safe to assume the perturbation to be 
infinitesimal, but here our final purpose will be to perform integration J'DA in (16) and 
it is necessary to keep the value of A unbound. Therefore, generally it might be better to 
use the generalized form of perturbation theory, which gives the 'standard' version and the 
degenerate version for 'close levels' in its limiting cases. However, in this paper we seek 
an expansion of the final free energy in powers of P-the field conjugate to k-keeping 
only the leading term. Accordingly, the optimal value of A can be taken limitingly small 
and corrections at large A neglected. 

The chain propagator for the initial system (at 1 = 0) is expressed through the spheroidal 
eigenfunctions of the non-perturbed equation (17), taking the form [SI 

where eigenfunctions of the even order are symmetric with respect to U -P -U change 
(they are expressed in terms of even-order Legendre polynomials) and odd eigenfunctions 
are antisymmetric. At high order parameter the corresponding eigenvalues coalesce in pairs 

r l O = 2 m  A ~ - A ~ = A ~ ~ Z @ Q J ~ X ~ [ - ~ ~ < <  1 (19) 
(higher-order eigenvalues are much larger, A b  - 2(2n + I)-, and are irrelevant at 
suficiently large N). The spheroidal functions Spo(u) and Spl (U),  being the eigenfunctions 
of equation (17) at 1 = 0, at high order parameter essentially become symmetric and 
antisymmetric combinations of exp[ i m ( n .  U)'] on the two poles of the unit sphere of 
orientations of U, normalized by the condition 1 (y) Sp,(u)Sp,(u) d u  = S., (see [22] 
for more details). 

Therefore the relevant correction to the individual chain propagator in the presence of 
perturbation A' is obtained from equation (17) by recursion as 

G(u, U"; [ I ] )  = Go(u, U', N )  

~ G O ( U I , Z L Z , S I  - s z ) ( ~ . u z ) G o ( z ~ z . ~ I , s z )  +... . 
(20) 

Using the symmetry properties of spheroidal functions and integrating over the chain contour 
length to obtain the Debye function of (9) in the last term. we have 

G(U, U', N :  [A]) = ~spo(u)spo(u')e-"o"/n 
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Integrating (21) over U. and U' and lifting the term with h" in the exponent, we can 
perform the final (Gaussian) integration over 'Dh in equation (16). Changing the variables 
from h to A' in the limit of very long chains (N + 00) we obtain 

m ksT 
V 2 A  = 2 i e x p  -- P' - -- [ n3Nm2 

Accordingly, the free-energy density is expanded in powers of the system polarization as 
0 

p z +  J1 p2 + ... (23) 

where, as before, p = N / V  is the number density of polar monomers and we have put 

A 
n3pmz m FO(P) S3 FO(0) + kBT- 

E = 0. 

4. Polar molecular field in a ferroelectric polymer 

The free energy of a nematic polymer is given by equation (3). In the previous section 
we obtained an expression for the first term of this expression (configurational entropy) in 
terms of the spontaneous polarization P. One of the coefficients of the expansion (23) 
depends on the coupling constant Jp which determines the polar part of the molecular field 
that acts on a monomer in a ferroelectric polymer. The parameter JP can be obtained using 
the general expression (12) for the polar molecular field and the expression for the effective 
short-range dipole-dipole interaction potential 

ugF(l)  =~svdd(1,2)[(3(612-r12) - llf(2)d12) = J P P ( " - ~ I ) .  (24 

The second term of the free energy (3) also contains the average of the effective dipole- 
dipole potential: interaction between monomers throughout the system independent of their 
assignment to a specific chain, modulated at short distances by steric repulsion. This 
contribution can be written as a purely orientational average in the form 

-$p2((Vg) = - fNp/U(u i ,uz ) f (~ i ) f (uz )duI  duz (25) 

where the positional integration has been performed to define the function U. Such 
integration is effectively performed over the anisotropic excluded volume domain r12 = 
I n  - VI I < 612 

WUI. ~ 2 )  = / h ( 1 ,  2)[@(612 - r1d - 1IdTlZ. (26) 

The measure of integration in (26) is drlZ = r:,drlzd&2. where the unit vector kl2 
describes the orientation of r12, the separation of centres of mass of the two monomers. It 
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is well known that the uniform orientational average of dipole-dipole potential vdd(l,2), i.e. 
the result of its integration over dblz  on a sphere, gives zero. Therefore we may separate 
the integration domain in (26) into the isotropic (spherical) part r , z  < d (FB = d ,  the 
monomer thickness) and the anisotropic part, d < r12 -= 612. The first integral contains a 
singularity at r i2  = 0, which has been discussed by Mazur and Mandel [24], for example. 
This term determines the depolarization factor of the sphere and is equal to 

The second integral over the anisotropic part of an excluded volume integration domain 
takes the form 

I ~dd(1.2)dr lZ=/[(mi .mz)-3(m1 *biz)(mz*hz)] (Inhz(2) -1nd)  d&z 
h z  

= m2h[Ul,Uz)(UI * U2). (28) 

The procedure of such integration over an anisotropic excluded volume for two 
spherocylinders has been described by Gelbart and Ben-Shaul 1151, and the particular 
integral with dipole-dipole interaction potential over an external volume (512 < riz < CO) 

has been calculated numerically in 1121. That result is equal to (28) with the opposite sign, 
so we can use its interpolated formula 

where Pz(uI . UZ) is the second Legendre polynomial of the scala product (ul . az). 
Interpolation (29) does not deviate for more than 5% from the numerical result in the whole 
region of variation of d / l  (0 < d / l  -= 1). 

Finally, collecting all contributions (27) and (28) to the average effective dipols-dipole 
potential and performing the orientational averaging with probability distributions f(u). we 
obtain 

(30) 

where S = (P~(u,. 212)) is the nematic order parameter of the system. The polar correction 
to the molecular field potential UMF (cf equation (12)) is given by 

8n d 
9 1  

~3 - - ( 1  - S/2)P2 for d/I  << 1 

1 2 d / l ( l  - d / l )  
P(n .U]) [ 1 - (1 - ;y + - (1 - S) 

4a 
3 

u ~ F  ~3 --m 
3 ( 1  - d / V  + 6(d/1)’ 

16x d 
9 1  F3 --- (I - S / 2 ) m P  (n ui) for d / l  << 1 .  

Equation (31) defines the value of the coupling constant J p  

16a d J1” Iti ( 1  - S/2 )m for d / l  << 1 
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5. Results and discussion 

The total free energy density of a dipolar nematic polymer melt is given by two terms in 
equation (3). This expression has been transformed into an expansion in powers of the 
uniform average polarization in the system (which is assumed to be along the principal axis 
of anisotropy n) 

A 8rr d F - Fo + kBT - P2 - - -(I - S/2 )  P* = Fo + a( T - Tc)P2 (33) p m W  9 1  
where the instability temperature is given by 

and where Fo is the free energy of a non-polar phase. The expansion (33) indicates that 
at some temperature T = T, there must be a polarization instability in a dipolar nematic 
polymer. In fact, at T c T the long-wavelength fluctuations of polarization are growing 
and the polymer can become ferroelectric. 

It is interesting to note that the instability temperature T, is inversely proportional to 
the geometric anisotropy of a single chain segment lid. Thus T, + 0 at l /d  3 W. This 
tendency can be readily understood if one takes into account the fact that two long parallel 
polar rods always have a positive dipoldipole interaction energy except for the rare case 
when the intermolecular radius vector is almost parallel to the long axes. However, 
this tendency of decreasing T, is overcomed by the rapid growth of the parameter A-* 
in  equation (34). We note that the parameter A is related to the persistence length of the 
semiflexible polymer chain in the direction parallel to the nematic director, Lscg - l /A.  
At the same time the parameter A determines a large longitudinal dielectric susceptibility 
of a nematic polymer, x;P FS pm2n/kBTA - e x p [ i , / m T  [ I I ] .  Using this simple 
expression for the susceptibility of the nematic polymer one can rewrite the instability 
criterion (34) as 

2 0 1 = --st XI,. 
9 1  (35) 

Now one can readily see that the possibility for the ferroelectric ordering in dipolar nematic 
polymer is related to large values of the longitudinal chain susceptibility. 

It is interesting to compare equation (35) with the corresponding expression for low 
molecular weight nematic composed of polar molecules. One can qualitatively perform the 
calculation, similar to this paper, also for the case of conventional nematic. The only (but 
important) difference will be in the configurational entropy, which has a particularly simple 
form in this case, - f(u) In f(u). As a result one can write the following expression for 
the freeenergy density of a polar nematic 

Fo -k -P2 + ((V,$)) 
1 F 

2x11 
where the susceptibility X I I  - pm2/kBT and the average of the effective dipoledipole 
interaction potential has essentially the same form as in the polymer case (see the third 
term in equation (33)). Now the hypothetical instability temperature T; for a conventional 
nematic can be estimated as kBTL - ( d / l ) p m * .  We note that this expression is very similar 
to equation (34). However, the value of the susceptibility X I I  (and hence the value of the 
instability temperature) is much lower than in the case of a semiflexible nematic polymer. 

Let us assume that the longitudinal dipole moment m - 1 D (in fact it can be 
several times larger for strongly polar mesogenic molecules). Taking the number density 



7058 E M  Terenrjev et a1 

p - 2 x 10” C I I - ~  we arrive at the estimate of the polarizational instability temperature for 
low molecular weight nematic, namely TL - 3 ( d / l )  K. Therefore, for typical axial ratios of 
mesogenic molecules, the temperature T: must be less than 1 K. The estimates, presented 
here, are obviously very crude. However, they can be considered as an indication that the 
corresponding instability is not practically accessible in a system like a rod-like nematic 
liquid crystal. 

By contrast, in the case of nematic polymers the longitudinal susceptibility is much 
larger and grows exponentially when the nematic order parameter S is increased. Thus 
one can hope that the instability criterion (35) can be satisfied for reasonable values of the 
dipole moment m and temperature T,. Indeed, the parameter A can be estimated as A R 

3 2 ( W / k ~ T )  e x p [ - 2 , / w q  and the nematic order parameter S R 1 - $4- in 
the case of A << 1 (section 3). The equation (34) can be rewritten as 

ksT, - Z j ( d / l )  pm2R3(l - S)2e3’c’-s) (36) 

i.e. this expression is asymptotically valid at large nematic order parameter. The rapid, 
exponential rise of the instability temperature is due to effecitve chain elongation and the 
cooperative effect of the dipoles on its persistent segments. 

A typical value for the effective rigidity R of an alkyl chain with 6-8 carbon atoms 
is ,Q - 3-5. Taking S = 0.75 we arrive at the estimate Tc - ( d / / )  x IO4 K. This is a 
very high transition temperature. We note, however, that the estimate strongly depends 
on the value of nematic order parameter and, for example, for S = 0.7 one obtains 
T, - ( d / l )  x 30 K. Therefore a ferroelectric instability can occur in strongly ordered 
semiflexible nematic polymers composed of polar mesogenic segments. 

It is important to note that dipolar nematic main-chain polymers have been synthesized 
recently [25.26] in the search for new nonlinear optical materials. In [26], asymmetrically 
disubstituted cyanostilbene monomers have been polymerized with alkyl spacers of 7 to 12 
CH2 units. It has been demonstrated that these polymers have high first- and second- 
order dielectric susceptibilities in the nematic phase. Therefore, the initial conditions for 
the application of our theory are satisfied and further investigation of these, or similar, 
materials would be desirable. 

In conclusion we would like to stress that the results of this paper only give some 
indication of the possible polarizational instability. This does not mean that we will 
necessarily find a homogeneously polarized polymer sample at lower temperatures. In 
fact, the analysis of [ 1.21 shows that a homogeneously polarized fluid must be unstable and 
the equilibrium structure can be rather complex. 

1 
for (I  - S) < 1 
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